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The p.d.f. of the velocity gradients in two-dimensional decaying isotropic turbulence 
is shown to approach a Cauchy distribution, with algebraic s-* tails, as the flow 
becomes dominated by a large number of compact coherent vortices. The statistical 
argument is independent of the vortex structure, and depends only on general scaling 
properties. The same argument predicts a Gaussian p.d.f. for the velocity components. 
The convergence to these limits as a function of the number of vortices is analysed. 
It is found to be fast in the former case, but slow (logarithmic) in the latter, resulting 
in residual u - ~  tails in all practical cases. The influence of a spread Gaussian vorticity 
distribution in the cores is estimated, and the relevant dimensionless parameter is 
identified as the area fraction covered by the cores. A comparison is made with 
the result of numerical simulations of two-dimensional decaying turbulence. The 
agreement of the p.d.f.s is excellent in the case of the gradients, and adequate in the 
case of the velocities. In the latter case the ratio between energy and enstrophy is 
computed, and agrees with the simulations. All the one-point statistics considered in 
this paper are consistent with a random arrangement of the vortex cores, with no 
evidence of energy screening. 

1. Introduction 
Two-dimensional turbulence constitutes a convenient, simpler, model to test ideas 

which may be applicable to turbulent flows in general. While there is no question that 
two- and three-dimensional flows are different, the decay of two-dimensional random 
initial conditions at high Reynolds numbers shares with 'real' three-dimensional 
turbulence many characteristics, such as chaotic behaviour, mixing, and a large 
number of degrees of freedom. It is therefore of interest that the behaviour of both 
systems is similar in some other respects, specially when it can be analysed better in 
one case than in the other. Although it may not be clear at the moment how to extend 
such analysis to the other case, the hope is that the methods which are successful 
in one might be of some use in the other when, and if, more information becomes 
available. In this paper we deal with the problem of the intermittent behaviour of one- 
point statistics. We will show that much can be derived for them in two-dimensional 
decaying turbulence, using a simple dynamical model and statistical arguments of 
purely kinematic nature. 

The presence of strongly intermittent probability distributions for the velocity gra- 
dients is characteristic of most turbulent flows at high Reynolds numbers (Batchelor 
& Townsend 1949; Anselmet et al. 1984; Castaing, Gagne & Hopfinger 1990). Their 
deviation from Gaussian is conveniently expressed in terms of their flatness factors, 
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which are known to behave in a way that may be consistent with unbounded moments 
in the inviscid limit (Van Atta & Antonia 1980). 

Attempts to explain this behaviour in terms of a structural description of the flow 
range from simple estimates (Townsend 1951) to the very sophisticated calculation 
in Pullin & Saffman (1993). The latter contains a good historical overview of the 
subject. Their success has been mixed, and they generally need at least one adjustable 
parameter to compensate for the incomplete knowledge of the details of the three- 
dimensional turbulent structure. 

Most theoretical discussions on intermittency have been purely statistical, empha- 
sizing the functional form of the probability density functions (p.d.f.s) of the different 
variables, and advancing models to explain them in terms of the global properties of 
the Euler equations (Kolmogorov 1962; Obukhov 1962; Gurvitch & Yaglom 1967; 
Novikov 1971; Parisi & Frisch 1985; Meneveau & Sreenivasan 1991). While the 
physical ideas behind these models are reasonable, they do not fully constrain the 
p.d.f.s, and most of them have to rely on phenomenological approximations to the 
experimental observations. A popular model that fits the tails of most observed 
distributions is the stretched exponential p ( x )  - exp(-cxb), where c and p generally 
depend on the Reynolds number (She 1991 ; Kailsanath, Sreenivasan & Stolovitzky 
1992). 

All the statistical moments, p,, = J” x”p(x )  dx, of stretched exponentials are finite, 
but they become larger as the ‘stretching’ exponent decreases, as it appears to 
do for turbulent gradients when the Reynolds number increases (see the references 
above). Distributions with algebraic tails have moments which are infinite beyond 
a given order, and the presence of very large flatness factors suggests that algebraic 
tails may appear in turbulence as the inviscid limit of the stretched exponentials. In 
fact algebraic probability distributions have been suggested on theoretical grounds 
for very intermittent distributions of the energy dissipation (Mandelbrot 1974). 

Recent numerical simulations have provided direct observations of the geometry 
of a particular fraction of the intermittent vorticity field which, in three-dimensional 
flows, is organized in the form of filaments (Siggia 1981; Kerr 1985; Hosokawa & 
Yamamoto 1990; She, Jackson & Orszag 1990; Ruetsch & Maxey 1991; Vincent 
& Meneguzzi 1991; Jimhez et al. 1993), raising the hope that the p.d.f.s could be 
derived directly from the kinematic properties of the filaments. That hope is still 
unfulfilled, because the filaments constitute only a small part of the flow, and the 
organization of the rest of the vorticity has to be understood before a full theory can 
be formulated. 

While the experiments quoted above deal with three-dimensional flows, very pro- 
nounced intermittency effects are also observed in two-dimensional isotropic decaying 
turbulence. The modelling situation is in this case different from the one in three 
dimensions, since it has been known for some time that the vorticity becomes 
concentrated into compact coherent structures that dominate the flow, which is oth- 
erwise mostly irrotational (Brachet et al. 1988; Santangelo, Benzi & Legras 1989; 
McWilliams 1990). 

From this simple dynamical model it is possible to predict the form of the p.d.f.s 
for both the velocity and the velocity gradients, thereby linking the statistical and 
structural descriptions of at least this simple turbulent flow but, to our knowledge, 
that has not been attempted up to now. The purpose of this paper is to study this 
connection. 

It is clear that the probability distributions of the strongest gradients and velocities 
depend on the details of the vorticity distribution within the compact vortices, and on 
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their strength and number, but we will show below that the same is not true for the 
irrotational velocity gradients in the background which, since the vortices fill only a 
small fraction of the total area, is responsible for most of the integrated probability. 
It will turn out that those p.d.f.s have algebraic tails. 

In the spirit of the first paragraph of this Introduction, we consider only two- 
dimensional flows, for which there is a reasonable consensus on the flow structure. 
The probability distributions for the gradients and for the velocity components are 
treated first in the limit of infinitely many point vortices. The effect of the finite 
number of vortices is then analysed and found to be negligible for the distribution of 
the gradients, but important for the velocities. Finally the corrections due to spread 
vortex cores are estimated, and the results compared to numerical simulations of 
decaying, high Reynolds number, two-dimensional turbulence. 

2. Point vortices 
Consider a two-dimensional flow field dominated by vortices whose characteristic 

vorticity and radius are oo and R, separated by an average distance L). The mean- 
squared vorticity, which is kinematically proportional to the mean-squared velocity 
gradient, is a'* - w ~ R ~ / D ~ .  The small parameter ( R / D ) 2  measures both the area 
fraction covered by the vortices and controls the extent of the tails of the p.d.f.s 
of the gradients, since the strongest gradients are those inside the vortex cores, and 
are O(WO), while it follows from the previous estimate that o o / d  = O(D/R) .  It 
is also clear that most of the gradients that are stronger than o' but weaker than 
O(o0) correspond to points outside the cores, so that even the intermittent tails are 
predominantly irrotational. The cores themselves behave like point vortices except in 
a very small fraction of the area. The same can be said of the p.d.f.s of the velocity 
components although, as will be seen below, their weaker dependence with distance 
makes the tails of their p.d.f.s less pronounced. 

Consider first the gradients. The following argument, adapted from Feller (1971, 
p. 179), shows that, in the limit of a two-dimensional velocity field generated by 
numerous point vortices, their p.d.f.s have algebraic tails. The only characteristic dis- 
tance in the problem is the mean vortex separation D, and it follows from dimensional 
analysis that the p.d.f. of the gradients can only depend on the dimensionless group 
D2s / I ' ,  where s is any component of the velocity gradient, and r is the character- 
istic circulation of each vortex. Distribute the vortices into Q statistically equivalent 
subgroups, and denote by s(;)(x), i = 1 . . . Q, the random variables representing the 
velocity gradients generated by each subgroup at the point x. The gradient due to the 
full system is s(x) = C s(j)(x). The joint system is statistically similar to any one of the 
subsystems, but its vortex density per unit area is N times larger. This is equivalent 
to decreasing vortex separation by a factor Q-1/2 and to re-scaling the gradients by a 
factor Q. The result is that the probability distribution satisfies 

with a = 1. This equation characterizes a member of the family of stable probability 
distributions, each of which is defined, except for scaling constants, by the exponent 
a. Their properties are described in detail by Feller (1971), to which the reader should 
refer for a full treatment, and they act as limit points for the addition of variables 
with the right probability densities. More precisely, a stable distribution of degree a 
is the limit for the sum of mutually independent random variables having common 
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distributions whose incomplete second moments 

p*(s) = x2p(x )  dx - s2-a when s + co. (2.2) 

Both definitions are equivalent and imply, roughly, that the distributions of the 
individual variables and of their sum have algebraic tails p(s )  - s-(‘+’). In essence, 
the tails of the probability distributions of the sum are dominated by the contributions 
of individual strong events, which occur seldom enough that they do not interact 
with each other, while the central part represents the cancellation of many weaker 
events, and looks ‘Gaussian’. Stable distributions exist only for 0 < a d 2, and the 
particular case a = 2 is the Gaussian, for which the classical result is the well-known 
central limit theorem for distributions with finite variance. That is the only case in 
which all the moments of the resulting distribution are finite. 

The argument given above for the scaling of the p.d.f. can also be put in terms 
of the behaviour of the probability tails for a single vortex. Consider the transversal 
or longitudinal velocity gradient generated by a single point vortex at a given point, 
s(x - xo). If the location, xo, of the vortex is random, the gradient at point x is 
itself a random variable, with a probability distribution which is proportional to the 
fraction of the area occupied by gradients in (s, s + ds). Since the magnitude of 
the velocity gradient generated by a vortex is proportional to r2, where r is the 
distance to the vortex centre, the area covered by gradients with magnitude greater 
than s is A(s)  - r2 - s-l, and the probability density for s is dA/ds - s - ~ .  The 
velocity gradient of the complete flow, generated by a large number of point vortices 
at random locations, is the sum of the individual gradients due to each vortex, and 
has the probability distribution of the sum of a large number of individual random 
variables which, since their tails behave as r2, approaches the stable distribution with 
a = 1. 

The unique stable distribution with a = 1, with the extra restriction of symmetry 
with respect to s = 0, is Cauchy’s (Feller 1971) 

which should therefore be satisfied both by the longitudinal and by the transversal 
gradients, sll  = dul/dxl and s12 = dul/ax2. 

Because of the arguments used to derive it, that distribution can only be expected 
to apply to the irrotational gradients found outside the coherent vortices, and the 
extreme ends of the p.d.f.s cannot be derived from it. On the other hand, as argued 
at the beginning of this section, those gradients include most of the p.d.f., including 
the tails, and it should be noted that, for them, the argument is independent of the 
distribution of sizes and circulations of the vortices and that, in the point-vortex limit, 
it predicts the full p.d.f.. 

The only requirement for the previous argument is that the distribution of the 
vortices is such that they can be separated into a large number of classes, each of 
which is statistically equivalent to the whole. This can be implemented in many ways, 
but the simplest is to consider all the vortices as being identical, uncorrelated and 
identically distributed. In this case the theory can be carried further and be made 
quantitative, and this is the only case that will be considered in the rest of the paper. 
It should be remembered, however, that the qualitative prediction of (2.3), with some 
unknown coefficient c, does not require mutual independence and should apply to 
more general cases. 
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An elementary analytical derivation of (2.3) in the uncorrelated case is the following. 
Consider N independent random variables with distributions which we will assume 
to be symmetric about x = 0, and denote the distribution of their sum by p N ( x ) .  
The distribution of the sum of two independent variables is the convolution of their 
individual distributions and, if we define the characteristic function as 

the characteristic function of the sum is the product of the two individual characteristic 
functions. The composite p.d.f. can then be obtained by the inverse Fourier formula, 

If we repeat the reasoning that led to (2.1), but separate the N original vortices into 
two groups of size N1 and N2, the dimensional argument implies that the characteristic 
function can depend only on T k / D 2 ,  which is proportional to k N .  The composition 
rule for the characteristic functions is then 

from which it follows that +,(k)  = exp(-ck). The exponential behaviour can either 
be recognized by inspection, or derived by letting N2 << N I ,  reducing (2.6) to a 
differential equation for log(#,). Equation (2.3) follows by Fourier inversion. 

Similar arguments can be used for other variables, as long as they can be computed 
as the linear superposition of the effects of individual vortex cores. For example, since 
the velocity scales only with the first power of the vortex separation, the p.d.f. for 
each velocity component should be stable, with an exponent a = 2. The characteristic 
function satisfies 

and &(k) = exp(-ck2), corresponding to a Gaussian p.d.f.. In general, the character- 
istic function of a symmetric stable distribution, with exponent a, can be shown in 
this way to be 4 = exp(-ck*). 

As with the gradients, it can also be argued that the velocity generated by a single 
vortex behaves as r - l ,  so that the area in which the velocity magnitude is greater 
than u is proportional to r2 - up', and the probability density is proportional to 
p(u) - uP3. Equation (2.2) cannot be used directly for this distribution, since the 
incomplete second moment diverges logarithmically with the cutoff, but it is known 
that the limit is Gaussian (Feller 1971, p. 578). The classical formulation of the central 
limit theorem assumes that the N individual distributions have finite variance, and the 
usual estimate that the limit is approached as N-'/' assumes that the third moment 
also exists. The case of u - ~  tails is marginal, and represents the most intermittent 
distribution whose sum still converges to Gaussian, suggesting that the convergence 
to the limit as a function of N will be slower than in the classical case. 

Random variables with no finite variance have not been used often in physics, 
although they are probably quite common. The argument cited above from Feller 
(1971) was originally applied to the distribution of the gravitational field in stellar 
clusters, and can be found in an earlier form in Chandrasekhar (1943). While the 
present paper was being reviewed, a referee made us aware of an application in the 
context of spin glasses (Cizeau & Bouchad 1993), and a problem which has been 
studied quite often is Brownian motion in which the individual steps have stable 

Mk"1 + N211/2) = 4u(kN: /2 )4u(kN: /2 ) ,  (2.7) 
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probability distributions ('Levy flights'). It is reviewed in Bouchad & Georges (1990). 
LCvy flights are also well known in economics (Mandelbrot 1982). 

3. The effect of a finite number of vortices. 
While there is a well-developed theory for the rate of convergence of the distribution 

of sums of variables with finite moments, as a function of number of summands, 
the corresponding theory for general stable distributions is not easily found in the 
literature, although Feller (1971, 9XVI) gives general methods from which it can be 
derived. We will obtain in this section expansions for the two cases a = 1 and 2. 

Assume N identically distributed symmetric random variables, with distribution 
p ( . )  and characteristic function 4 ( k ) ,  and define 4 N ( k )  as the characteristic function 
of the p.d.f. of the sum, pN(*), which satisfies 

4 N ( k )  = 4N(k). (3.1) 

Because of the positivity of the probability functions and their normalization to 
unit mass, 4(0) = 1 and, for continuous densities, 4 < 1 everywhere else. As a 
consequence, only the neighbourhood of k = 0 is important in the Fourier integral 
(2.5) for large N, and the limiting distribution for many summands can be studied 
from the series expansion of 4(k) for small k which, in turn, is dominated by the 
behaviour of the tails of p(x). 

Consider first the case of the gradients, and assume that 

p ( s )  = + O ( s - 3 ) .  (3.2) 

The constant a, is a characteristic scale for the gradients, and an asymptotic expansion 
of 4 can be obtained for 0 d ka, << 1 by separating the integral (2.4) into (0, a,) and 
(as, oo), and estimating each part separately. After some work, 

4(k) = 1 - nka, + O(k2). (3.3) 

The expansion for 4~ is obtained by noting that log(1 + c ) ~  = N log(1 + E )  = 
NE + O(Ne2),  so that 

(3.4) 
We define a scaled variable 2 = Nnka,, which is 0(1) in the range in which the 
exponential in (3.4) is significant. The remainder term in the exponent is small, and 
the exponential can be expanded in series 

$N(k) = exp[-Nnka, + O(Nk2)]. 

4 N ( k )  m CZ[1 O(Z2/N)], (3.5) 

and substituted in (2.5) to obtain 

p N ( s )  = - e-' cos(Zs/cN)dZ [1+ O(l/N)] m ~ + .  .. , (3.6) 
C N n  J' 0 c; + s2 

where 

and the residual term is O(N-l). 

the tails of the one-vortex distribution behave as 

CN = Nna, (3.7) 

The expansion for the characteristic function in the case of the velocities, for which 

p ( u )  = a;u-3 + 0 ( ~ - 4 ) ,  (3.8) 
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is similar, but the leading term in 4N is 

4&) NN exp[Nk2ai(log ka, - Q 2 )  + . . .], (3.9) 

where 

and y is Euler’s constant. This is a dimensionless parameter, and is typically O(1). 
The scaled variable is now 2 = Aka,, where A satisfies 

A2 = N(Q2 + log A).  (3.11) 

This equation only has a solution when N is large enough that N’/*exp(Qz) > 2.33, 
in which case it has two roots, the relevant one being 

A = o(N’/2).  (3.12) 

In terms of the scaled variable 

(3.13) 

The leading term is exp(-Z2), which corresponds to a Gaussian distribution for p ~ ( u ) ,  
in the limit N >> 1: 

(3.14) 

but the residue is only 0(1/logA) = 0(1/logN), which decays much more slowly 
than in the previous case, and is actually so slow as to make convergence irrelevant 
in most practical cases. Moreover, while the series in (3.5) was uniformly valid for 
2 < 0(1), the one in (3.13) fails near the origin when Z = O(A-’).  Since the behaviour 
of a Fourier integral at large u is controlled by the behaviour of the integrand at 
small k ,  this failure suggests that the convergence of the far tails of p N ( u )  to Gaussian 
might be even slower than that suggested by the magnitude of the residue, and that 
there might be a persistent large deviation failure at all N .  

In fact, near the origin 4 N ( k )  a 1 + Nk2at log(ka,), and p ~ ( u )  is dominated at large 
u by the logarithmic singularity at k = 0, whose Fourier transform can be written 
directly as (Lighthill 1958) 

pN(u)  NN Naiu-’, (3.15) 
which recovers the cubic tails. In terms of the normalized variable 

~ U P N ( ~ )  ( ~ / ~ ~ ) - ~ / 2 ( l o g  A + Q2) ( u / ~ u ) - ~ /  log N ,  (3.16) 

displaying the logarithmic character of the approximation. The tails become promi- 
nent beyond the oint at which the Gaussian and (3.16) are of the same order, which 

the residue, showing that the algebraic tails remain visible in p~ for all reasonable 
values of N .  We will see in the next section that this last conclusion is modified 
significantly when the point vortices are substituted by spread Gaussian cores. 

An intuitive interpretation of these distributions is possible. The only length scales 
in the p.d.f.s for a single vortex are contained in the parameters a, and a,, which 
are related to the size of the domain in which the vortex is located. Consider, to fix 
ideas, the gradients due to a single point vortex of circulation r ,  at the centre of a 
square box of area L2. We know that p ( s )  a a,/s2, and that the probability of finding 

is u/a, = O(1og I f :  logN). This point tends to infinity even slower than the decay of 
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gradients stronger than s is P(s) w -I;z,,sp(~)dz = 2 4 s .  If we apply this equation 
to the weakest gradient in the box, which is O ( r / L 2 ) ,  we cover the whole area and 
we should get an accumulated probability of order one. In this way we estimate that 
a, - r / L 2 .  The precise value of a, can be found by computing the area A(s) covered 
by gradients larger than a given threshold and letting p(s )  = -L-2dA/ds. The same 
argument can be applied to the velocity components, and the detailed results are 

(3.17) 

The process of computing the distributions for the sum of N vortices introduces a 

D = LN-‘/2. (3.18) 

In the case of the gradients, the width of the Cauchy distribution (3.6) is CN - Nu, - 
r/D2, which is the characteristic gradient at the distance D. In the case of the 
velocities, the central Gaussian (3.14) has a standard deviation ( T ~  - N1’2au - r / D ,  
which is also the characteristic velocity at that distance. The intuitive interpretation 
is that gradients, or velocities, which are weaker than those thresholds, and which 
therefore correspond to points which are farther from the nearest vortex than the mean 
distance D, contain contributions from many cores, and are ‘Gaussianized’. Stronger 
gradients belong to points in the immediate neighbourhood of one vortex, and which 
are predominantly influenced by it. They have distributions which are algebraic, 
similar to those generated by a single vortex, but their proportionality constants are 
N times larger, because they originate in N independent neighbourhoods, instead 
of in a single one. It is easy to see from (3.6) and (3.7) that the behaviour of 
the tail of the distribution of the gradients is p ~ ( s )  = Nu,/s2, which is N times 
larger than for a single vortex, while (3.15) can be interpreted in the same way for 
the velocities. Figure 1 summarizes this decomposition for two particular cases of 
gradients and velocities, while figure 2 displays the evolution of both distributions 
as a function of the number of vortices. The one-vortex p.d.f.s in these figures are 
chosen arbitrarily, with the appropriate tail decay laws, while the N-vortex ones are 
computed numerically by Fourier convolution, as in (2.5)-( 3.1). 

The different behaviours of the two limits are clearly displayed in those figures. 
For the velocities the convergence is slow and the algebraic tails are strong even 
for N = lo4, while the distribution of the sum in the case of the gradients is 
indistinguishable from the Cauchy limit for N = 10. 

r r 
a -  - 2(241/2L’ = - 2.n L2 * 

new length scale, which is the mean distance between the vortices 

4. The effect of extended cores 
In the point vortex model, the velocity and the gradients are unbounded at the 

vortices, and the tails of the p.d.f.s extend to infinity. In actual turbulence the 
vortices have spread cores, with a vorticity distribution that is approximately Gaussian 
(McWilliams 1990), and the maximum values of the different quantities are determined 
by the size of the cores. It turns out that a sharp tail cutoff is a reasonable model for 
the modifications introduced by the Gaussian core in the probability distributions of 
a single point vortex (see figure 3). Since we will always assume that the vortices are 
small with respect to the box, and even with respect to their mean separation, the 
presence of extended cores affects little the behaviour of the probability tails below 
the cutoff, but the presence of the latter is important in determining the statistical 
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FIGURE 1. Decomposition of the p.d.f. of the sum of N = 100 identical vortices, showing the 
osculating Gaussian (dotted line) and the tails (dashed), using values from the equations in the text. 
The solid lines are the full p.d.f.s, obtained by numerical convolution. (a) Velocities, initial p.d.f.: 
p(u)  - [l - exp(u4/n4)]/u3 (see figure 2).  ( b )  Gradients, initial p.d.f.: p(s) - [l - exp(s4/n4)]/s2. 

0 2 4 6 8 
ula, 

FIGURE 2. Probability distribution functions for sums of N identical independent variables, obtained 
as in figure 1. (a) Velocities. Solid line: N = 1; dashed: 10; dash-dot: lo2; dashed-double-dotted: 
lo4; dotted: Gaussian. All curves scaled by (3.11), (3.14), except for N = 1, whose scaling is 
arbitrary. (b)  Gradients. Solid line: N = 1; dashed: 2 ;  dash-dot: 5; dashed-double-dotted: 10; 
dotted: Cauchy’s; scaled by (3.7). The last three lines can barely be distinguished. 

p.d.f. 

s, 
FIGURE 3. P.d.f.s for a single Gaussian vortex core, located at the centre of a square box of side 
L = 80. Solid line: s l2;  dashed: sll; dash-dotted: velocity. The two dotted lines are power laws with 
the coefficients from (3.17). 
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moments. In fact, both for the velocity and for the gradients, a finite cutoff of the 
tails is needed to define variances for the distributions. 

The p.d.f.s in figure 3 were obtained numerically for a vorticity distribution 

o = 00 exp(-r2/R2), (4.1) 

with 00 = 2 and R = 1, located at the centre of a large square box. The dotted lines 
are the p.d.f.s of a point vortex in the same box, with the coefficient given by (3.17). 
They only differ from the computed ones at very low gradients, where the effect of 
the box has not been included in the point vortex case, and near the sharp cutoffs, 
which correspond to the behaviour inside the core. The discontinuity in the tail of the 
p.d.f. for s12 is due to the artificial symmetrization of the distribution, which reflects 
the presence of vortices of both signs. The p.d.f. of a single vortex is not symmetric, 
and the step corresponds to the cutoff of the shorter leg. 

Once the extended cores are included in the analysis, the core radius, R, defines 
a third length scale. The limit of large N corresponds to D << L, and the point 
vortex limit to R << D. When both conditions are satisfied, the distributions look like 
those in the previous section, but the tails are limited to values below those found 
in individual cores. In fact, since R << D, the cutoffs affect only the tails of the 
distributions, where the interaction between cores is negligible, and the structure of 
the p.d.f.s in their neighbourhood is approximately preserved. If we denote by z, the 
cutoff for a given variable z, which is always associated with the core and with the 
length scale R, and by zD the corresponding value at a distance D, which defines the 
width of the 'Gaussian' region, the extent of the tail is Z,/ZD. In our two cases 

A useful parameter, which we will use from now on to characterize this ratio, is the 
area fraction 

Within the approximations in the previous section, the length of the tails of a given 
distribution should depend only on this parameter, and (4.2) implies that, for the 
gradients, the relative length of the tails is O(e-'), while for the velocity it is shorter, 

In the case of Gaussian cores, the maximum values of the two gradients and of the 
O( E - q .  

velocity are 

~ , 1 1  % 0.1500, ~ , 1 2  = ~00/2, U, w 0.32ooR, (4.4) 

from which it follows that the transversal gradients have, in general, the most 
intermittent tails, followed by the longitudinal ones, and finally by the velocities. 

This is tested in figures 4 and 5, which display p.d.f.s obtained numerically by the 
convolution of those for a single Gaussian vortex. In figure 4 we present results 
for sI1, which very quickly approach a truncated Cauchy distribution, as was the 
case with point vortices. Note that the slight overshoot near the cutoff was already 
present in the single-vortex distribution in figure 3. For figure 4, the distributions were 
normalized using the theoretical estimations in (3.6) and (3.17), and the calculations 
were repeated, at the same values of E, for two different cases corresponding to 
L / R  = 200 and 80. Although the caption in the figure refers to the bigger box, the 
p.d.f.s for both cases are indistinguishable at the scale of the plot. 
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FIGURE 4. P.d.f.s for s11, obtained numerically by convolution of Gaussian vortex cores. In (a) the 
p.d.f.s are normalized as in (3.6), and the dotted line is Cauchy's. In (6) they are normalized to 
emphasize the tails and the constancy of the cutoff. The dotted line is s - ~ .  In all cases L / R  = 200 
for the single-vortex distribution. Solid line: N = 125, E = 0.0098. Dashed: N = 175. E = 0.014. 
Dash-dotted: N = 250, E = 0.020. Dash-double-dotted: N = 500, E = 0.039. 
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FIGURE 5. Velocity p.d.f.s, obtained numerically by convolution of Gaussian vortex cores. P.d.f.s are 
normalized using a, from (3.11), (3.14). The cases (a) are the same as in figure 4, and the dotted line is 
the osculating Gaussian. In (b )  we compare two cases at same E but for a different number of vortices, 
as well as the corresponding point vortex distributions. Solid line: N = 125, E = 0.0098, L / R  = 200. 
Dashed: N = 20, E = 0.0098, L / R  = 80. Dash-dotted: N = 125, E = 0. Dash-double-dotted: 
N = 20, E = 0. 

The same is not true for the velocities, owing to the much slower convergence of 
the expansion. In figure 5 we plot velocity p.d.f.s obtained for the same cases as in the 
previous figure. In figure 5(a) we present results for the larger box, normalized using 
the standard deviation computed from (3.11)-(3.14), and the collapse of the central 
parts is excellent. In figure 5(b), we compare the results for the two values of L / R ,  at 
the same e and, even if the central parts still collapse, the tails do not. Recall in this 
connection that the whole Cauchy distribution is the large-N limit in the case of the 
gradients, while the only part of the velocity p.d.f. which corresponds to the limit is 
the central Gaussian. 

When the velocity p.d.f.s for spread cores are compared in figure 5(b) to those 
for the same number of point vortices, their interpretation as algebraic tails with 
a smoothed cutoff becomes plausible. In the absence of this direct comparison the 
algebraic interpretation of the tails would be difficult, and it would only become 
obvious again for values of e much smaller than those in our sample. This is due to 
the weaker dependence of the length of the tail as a function of e, compared to the 
case of the gradients. The shorter tail is masked by the smoothed cutoff, which has 
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a width comparable to that of the central Gaussian. This last observation can easily 
be understood if we remember that p ~ ( u )  is the convolution of P " - ~ ) ( U )  and p(u), 
and that any sharp feature in the one-vortex p.d.f. is immediately smoothed by its 
convolution with the wide central Gaussian of the sum. The same effect is obvious in 
the structure of the cutoff for the gradients in figure 4 but, there, the longer tails are 
still clearly visible. The result of all this is that, for the velocities, the behaviours of 
the point vortices and of the extended cores are very different. While the former, with 
its infinite velocities near the cores, gives rise to persistent tails, the latter converges 
fairly rapidly to smoother distributions. 

In essence, the difference in the behaviour of the gradients and of the velocities 
derives from the different ranges of the two quantities. While the gradients are fairly 
local, decaying as l/r2, and the tails of the p.d.f. persist even in the presence of 
many vortices, the velocities, which decay like l /r,  have longer ranges, and even the 
relatively strong velocities in the neighbourhood of one core are Gaussianized by 
the influence of their neighbours. Note that this argument does not hold for point 
vortices, in which the infinite velocities at the centres cannot be compensated by any 
amount of interaction with a finite number of other vortices. 

5. Numerical experiments 
In this section we compare the theoretical results obtained above to the evolution 

of the p.d.f.s of the gradients and velocity components in a numerical simulation of 
isotropic decaying two-dimensional turbulence in a periodic box (Arroyo et al. 1994). 
The code is fully spectral and dealiased, and the power spectrum is reasonably well 
resolved after u't/L = 0.2, with a clear exponential dissipative range at the maximum 
numerical wavenumber k,,, = 341. It uses fourth-order hyperviscosity, v4V4, with a 
large scale Reynolds number u'L3 /v4  = 5 x 1O1O, where u' is the mean-squared value 
of one velocity component. The initial conditions are chosen so as to duplicate the 
simulation described in McWilliams (1990) at a somewhat higher resolution. The 
initial vorticity is random, with a fairly peaked spectrum and Gaussian p.d.f.s, but 
intermittent tails develop immediately for the gradients. The isotropy relations 

(s:) = 3(~: , )  = 3or2/8, (5.1) 

w'2 - - (a2). Note that none of the p.d.f.s of the point vortex model has finite variance, 
are well satisfied at all times, where (.) stands for averaging over the whole box and 

so that the existence of all the averages in (5.1) depends on the parameters of the 
extended cores, and that the same is true for u'. 

An algorithm was developed to identify individual vortices (JimCnez, Moffatt & 
Vasco 1996), and it was used to compute vortex numbers and area parameters at 
four times during the decay of the flow, whose properties are summarized in table 1. 
It fits an elliptical Gaussian vorticity distribution to each core, to obtain the core 
geometry and circulation. The fourth column in the table compares the total flow 
enstrophy with that contained in the vortices identified by the algorithm, and it is 
clear that most of the enstrophy quickly becomes concentrated in the cores. The next 
two columns give values for the area parameter 6. One of them, S,/L2, is computed 
directly from the vortex catalogue, while the other is computed from the relation 

€ = 0 1 4 / ( 0 4 ) ,  (5.2) 

which can easily be shown to be true for identical non-interacting Gaussian cores. 
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d t / L  N W ; ~ / W ' ~  6 S,/L2 LIR CNIW' 6 , I d L  
__ 0.4 346 0.88 0.045 0.046 155 0.150 0.0087 
- - -  1.0 175 0.96 0.032 0.037 131 0.126 0.0097 

2.1 95 1.02 0.023 0.027 113 0.107 0.0105 
- . .- 3.7 57 1.02 0.019 0.022 97 0.097 0.0117 

TABLE 1. Characteristics of the flows fields used in $5. Line types are used consistently in the figures. 
The area parameter E is computed both from (5.2), and directly from the vortex catalogue. The 
former is the one used in the paper. The fourth column compares the enstrophy contained in the 
vortices identified by the program, w:*, to the total enstrophy in the field. The slight excess in the 
last two fields is a measure of error for the Gaussian core model. 

The results from both methods are very similar and, since (5.2) is more robust and 
easier to apply, it will be used below in preference to the direct method. 

The number of vortices, N ,  given in table 1 includes vortices with a rather wide 
distribution of sizes, which can only be approximately related to the identical cores 
assumed in $4. The number itself is somewhat uncertain, since an arbitrary decision 
has to be taken on the minimum size at which an object is considered a vortex, and 
the total number depends on this threshold. We have decided to keep all vortices 
compatible with our numerical resolution (R > 1 grid point), and our vortex count is 
approximately 20% higher than that in McWilliams (1990) at the first time considered, 
but decreases to about the same number as in that paper by the end of the run. 

To relate the numerical simulations to the theoretical p.d.f.s we still need to estimate 
the value of the circulation, or the peak vorticity, in an equivalent population of 
identical vortex cores. It is easy to show that, for identical Gaussian vortices, 

0 0  = W'(2/.)1'2. (5.3) 

If E is estimated from (5.2), using (5.3) is equivalent to estimating wo from the fourth 
moment of the vorticity p.d.f., and W' from the second. With these definitions we can 
compute theoretical widths for the Cauchy and Gaussian limits of the distributions, 
using the equations in the two previous sections, 

where A is given by (3.11), and is only a function of N and of the parameter Q 2  from 
(3.10). The latter is a function of the one-vortex p.d.f. at low velocity magnitudes, and 
it depends only on the geometry of the box. It can be computed numerically and, 
for a small vortex in a periodic box, Q 2  = 0.08. As a comparison, the result for the 
simple open box used in $4 is Q2 = -0.16. A value for L / R  can also be derived from 
N and from the definition of E. The results are given in the last three columns of 
table 1. Note in particular that the values for L/R are intermediate to the two cases 
considered in $4, and that the E are in the less-intermittent range considered there. 

Note that, if the approximations (5.2) and (5.3) are accepted, (5.4) is a prediction 
of the absolute scale of the p.d.f.s for the gradients and for the velocities, with no 
adjustable parameters. Note also that (5.2) and (5.3) are statements about the vorticity 
p.d.f., which is not being used directly in this paper. Once the p.d.f.s of numerical 
flow fields are scaled with (5.4) they can be compared with the normalized Cauchy 
and Gaussian distributions predicted in the previous sections. The results are given in 
figures 6 8 .  The scaling of the central p.d.f.s for both gradients in figure 6 is excellent, 
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FIGURE 6. Gradient p.d.f.s for the numerical flow experiment described in the text. Lines are as in 
table 1, and the dotted line is the normalized Cauchy. (a) s11. (b) s12 

S12’Sln 12 

FIGURE 7. Same as figure 6, but with p.d.f.s scaled to emphasize the tails and the influence of the 
cutoff. Normalization is the same as in figure 4(b). 

U /cr, 
FIGURE 8. Velocity p.d.f.s for the same cases as in figure 6. Normalisation is with the Q. computed 
from the run parameters, as explained in text. Dotted line is Gaussian. Scaling should be compared 
to figure 5(a). (a)  Simulation results. (b)  Numerical convolution results with the same parameters 
as the simulations. 

even if a’, which is used as the basic scaling parameter, varies by a factor of two 
during the time of the simulation. 

The p.d.f.s for the two gradients also agree well with the normalized Cauchy 
distribution, and the deviations from it are similar to those in figure 4 for extended 
Gaussian cores. The four simulations are comparable, in terms of E ,  to the two leftmost 
curves for s11 in figure 4, and the same overshoot above the Cauchy distribution can 
be observed in both cases. 
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FIGURE 9. Flatness factors for sil (circles and solid line), s12 (triangles and dashed line), and velocity 
(crosses and dash-dotted line). Symbols are from simulations; lines are numerical convolution 
results at the same E. and L / R  = 80. Dotted line is Gaussian, F = 3. 

The collapse of the tails in terms of s, is tested in figure 7, in which the maximum 
gradients are taken from (4.4) and (5.3). This figure should be compared to figure 4(b),  
and again the collapse is excellent. In particular the p.d.f.s for s11 should be compared 
to the two curves with higher e in figure 4(b).  

The collapse of the central Gaussians in figure 8(a) is satisfactory, specially when it 
is taken into account that no experimental values of u' were used in that figure. The 
tails, as has always been the case for the velocity, do not collapse. The p.d.f. at the 
first time considered is close to Gaussian but, as the decay progresses, the number of 
vortices decreases and the area ratio becomes smaller, with the result that residual 
algebraic tails become noticeable. They compare favourably with those in figure 8(b), 
which are computed by numerical convolution of the single-vortex p.d.f. at the values 
of E. and N measured for the simulations. The agreement is specially good for the last 
three cases, in which the area ratio has decreased enough for the small-vortex limit 
to become applicable. 

A more compact comparison of the behaviour of the predicted and observed tails 
for all the distributions can be made in terms of the flatness factor 

F4 = P4/d ,  (5.5) 

which would be equal to 3 for a Gaussian, and infinite for an unbounded Cauchy 
distribution. Measured and predicted flatness are compiled in figure 9, which includes 
the simulation described in this section, and other simulations at different Reynolds 
numbers and stages of developments, using both fourth-order hyperviscosity and 
Newtonian viscosity. For those other simulations only E. was determined, using (5.2), 
but the number of vortices was not measured. Although that is not important for 
the gradients, we have seen that it has an influence on the velocities, for which the 
prediction is, therefore, uncertain. The theoretical results in figure 9 were obtained by 
numerical convolution of the p.d.f.s in figure 3 but, for the gradients at small E., they 
can be approximated by those obtained for a Cauchy distribution truncated at sm, 

71 s, n2 -2  + O(e). F4 = -- + - 
3€ 0 0  6 

For the velocities we have included both the convolution results and the Gaussian 
limit F4 = 3. As could be expected from the comparison of the p.d.f,s, the agreement 
is satisfactory, and becomes better for those cases, like s12 at low e, with the most 
intermittent distributions. 
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FIGURE 10. Velocity/vorticity r.m.s. ratio for the simulation in the text. Line is simulation results, 

and symbols are the predictions from the convolution of the single-vortex p.d.f. 

Finally figure 10 shows the predicted values of the ratio between r.m.s. velocity 
and vorticity, and the results of the simulation. The prediction is obtained from the 
value of U’/CT, derived from the numerical convolution of the one-vortex simulations, 
together with (5.4). The agreement is good, specially again for the later times in which 
the small-vortex limit is applicable. This agreement is interesting, because it tests the 
central hypothesis of this paper, which is that the geometrical arrangement of the 
vortices is random. Once we have tested, as in figures 6 and 7, that the parameters 
chosen for our vortices represent reasonably well the distributions of the gradients, 
the calculation of the r.m.s. velocity follows immediately from the property that 
the variance of the sum of mutually independent variables is the sum of individual 
variances. These truncated distributions all have finite second moments, and the 
variance of the one-component velocity p.d.f. is the specific kinetic energy of the flow. 
The agreement in figure 10 is therefore a test that the kinetic energy of the vortex 
distribution is, statistically, the sum of the kinetic energies due to the individual 
vortices. It has been suggested that the representation of two-dimensional turbulence 
in terms of point vortices should take into account screening effects like those found 
in plasmas (Ruelle 1990), but the present result implies that, at least in this case, such 
effects are negligible. 

6. Conclusions 
We have given a simple statistical argument that predicts the form of the p.d.f. of 

the velocity gradients in decaying two-dimensional turbulence, in the limit in which 
the flow is dominated by a large number of compact vortices. It turns out to be 
Cauchy’s, which has algebraic tails, and no finite moments, including variance. When 
the effect of spread Gaussian cores is included, rather than point vortices, the range 
of the algebraic tails is seen to increase to infinity as the area fraction covered by 
the vortices goes to zero. The same argument predicts Gaussian distributions for 
the velocity components. The first prediction is shown to agree well with numerical 
simulations of decaying turbulence, but the second one does not. 

This failure is traced to the different rates of convergence to the limit in both cases, 
as a function of the number of vortices. While the convergence is algebraic in the first 
case, it is only logarithmic in the second, and the corrections take the form of new 
algebraic tails, that persist for all practical situations in the case of point vortices. 
When the effect of spread cores is included, the range of these tails increases also with 
decreasing area fraction, but slower than in the case of the gradients, resulting in tails 
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that, although persistent, are difficult to identify as algebraic, except for unrealistically 
small vortices. 

Once the effects of spread cores and of a finite vortex number are included, the 
predictions can be compared in detail with the result of turbulence simulations, and 
the agreement is satisfactory. In particular, the functional forms and the width of 
all the p.d.f.s are predicted correctly from the measured parameters of the vorticity 
distribution. There are no adjustable parameters in this comparison, besides the 
measured values for the number of vortices, radii and circulations. 

Besides the assumption that all the vorticity is concentrated in the vortex cores, 
which is checked independently to be a good approximation for our simulation, the 
only physical hypothesis in our study is that the arrangement of the vortex cores is 
random, with no dynamical aggregation or screening effects. One consequence, which 
was checked explicitly in figure 10, is that the mean kinetic energy is the sum of the 
kinetic energy due to the vortex cores, and that interaction effects are negligible. It 
is not clear whether this, which would be an important conclusion for the modelling 
of two-dimensional turbulence in terms of point vortices, is a general property, or is 
just true for the particular simulation considered. 

It is tempting to apply similar arguments to three-dimensional turbulent flows, 
which also display intermittency effects at large Reynolds numbers, and in which 
compact vortex filaments have also been observed. In that case, however, the vortices 
do not seem to be the dominant source of the velocity gradients, and a similar analysis 
of the p.d.f.s would require an understanding of all the other components of the flow. 

This work was supported by the Human Capital and Mobility program of the 
European Union, under contract CHRXCT920001. I am grateful for several useful 
discussions with Joe Keller and Rachel Kuske, at Stanford, on the subject of $3. 
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